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Quantum XY spin glass model with planar Dzyaloshinskii-Moriya
interactions in longitudinal field?
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Abstract. In the replica symmetric approximation and static limit in Matsubara “imaginary time”, the
quantum XY spin glass model with planar Dzyaloshinskii-Moriya interaction in longitudinal field is inves-
tigated. Several thermodynamic quantities are calculated numerically as well as spin self-interaction and
spin glass order parameter for spin S = 1/2. It is shown that the entropy is not independent of the field. A
crossover behavior of the specific heat depending on temperature is found. There is a deviation from the
parabolic approximation, C/T = A+Bh2.

PACS. 75.10.Nr Spin-glass and other random models – 75.50.Lk Magnetic phase boundaries (including
magnetic transitions, metamagnetism, etc.) – 75.30.Gw Magnetic anisotropy – 75.40.Cx Static properties
(order parameter, static susceptibility, heat capacities, critical exponents, etc.)

The properties of the glass have usually been interpreted
in terms of the Sherrington-Kirkpartrick infinite-range
model treated in various extensions and approximations.
[1–7] Quantum spin glasses were studied for the first time
by Sommers [4] and by Bray et al. [5] independently who
treated an isotropic quantum Heisenberg spin glass model.
Though the quantum problems are usually treated in
“static” limit in which the noncommutativity of spin is
neglected, the essential properties are revealed.

In 1983, Brodale et al. [9] showed that: the temper-
ature curves of the specific heat, C, in CuMn sample,
have the crossover behavior, the broad maximum in C
is shifted to higher temperature with increasing applied
field. The specific heat anomaly can be used to determine
the transition to the spin-glass phase in CuMn. Out of
de Almeida and Thouless’ expectation [10], no evidence for
a region of field independence of S was observed: accord-
ing to the Parisi-Tolouse hypothesis, they recognized that
the entropy is independent of applied field below phase
boundary.

To our knowledge, there has been little attention
paid to the quantum XY spin glass model with the
Dzyaloshinskii-Moriya (DM) couplings between spins.
This model has experimental applications due to the
possibility to perform laboratory studies on spin-glass
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with strong anisotropy forcing the spins to align in a
plane [11–16].

In the other hand, it has been found that a number
of hexagonal metallic spin-glass properties are strongly
influenced by various types of anisotropies [11,17,18]. A
typical anisotropy is the DM couplings between spins, it
may be written as

HDM =
∑
i<j

Dij(Si × Sj). (1)

The purpose of the present paper is to investigate the
quantum infinite range XY spin glass model with infinite
range random planar DM couplings in an external field for
spin S = 1/2. The entropy and the specific heat as func-
tions of temperature and field are calculated numerically.
The corresponding spin self-interaction and the Edwards-
Anderson spin glass parameters are evaluated.

The total Hamilton operator for a XY spin-glass
model with DM couplings in longitudinal field reads

H=−
∑
i<j

Jij(SixSjx+SiySjy)−
∑
i<j

Dij(SixSjy − SiySjx)

− h
∑
i

Siy (2)

where the strength of exchange interactions Jij and Dij

are quenched and distributed with Gaussian functions,
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respectively

P (Jij) =

(
N

2πJ2

)1/2

exp

(
−
NJ2

ij

2J2

)
, (3a)

and

W (Dij) =

(
N

2πD2

)1/2

exp

(
−
ND2

ij

2D2

)
, (3b)

where J andD are defined as the mean variance of the XY
exchange interaction and the DM coupling, respectively.

The deviation of the free energy is a generalization of
the work by Bray and Moore [8]. The free energy function
per spin reads

f(R,Q, β)/J =
1

4
Jβ[(1 + d2)(R2

T −Q
2
T ) + (R2

L −Q
2
L)

+ 2d2(RTRL −QTQL)]−
1

Jβ

∫
Dz lnL(z),

(4)

where β = 1/kBT , d = D/J , the function L(z) is defined
as

L(z) = 2

∫
Dz1 cosh[Ω(z, z1)], (5)

with

Ω(z, z1) =
Jβ

2

√
(a1x+ a2x1)2 + (a3y + a4y1 + h̃)2, (6)

a1 =
√

(1 + d2)QT + d2QL,

a2 =
√

(1 + d2)(RT −QT ) + d2(RL −QL),

a3 =
√
d2QT +QL,

a4 =
√
d2(RT −QT ) + (RL −QL),

h̃ = h/J. (7)

The abbreviation denotes

〈A(z)〉z =

∫
DzA(z)

=
1

2π

∫ ∞
−∞

dxdy exp

(
−
x2 + y2

2

)
A(z). (8)

We calculate directly the thermodynamics functions from
the free energy in equation (4) with the familiar thermo-
dynamic formulae. The entropy of the system is given by

S(R,Q, β)/kB=

(
Jβ

2

)2

[(1+d2)(R2
T−Q

2
T )+(R2

L−Q
2
L)

+ 2d2(RTRL −QTQL)] +

∫
Dz lnL(z)

− 2

∫
Dz

L(z)

∫
Dz1Ω(z, z1) sinh[Ω(z, z1)].

(9)

Fig. 1. The curves of the longitudinal (solid) and transverse
(dashed) order parameters for different field. The up-going
curves refer to Rθ’s (θ = L, T ), the down-going curves refer
to Qθ’s. From bottom to top, the curves of RL and QL cor-
respond to h̃ = h/J = 0.16, 0.24, 0.32, and 0.40. From top
to bottom, the curves of RT and QT correspond to h̃ = 0.16,
0.24, 0.32, and 0.40, where d = 0.2, S = 1/2.

The specific heat can be calculated from the formula

C = −β
dS(R,Q, β)

dβ
· (10)

We do not give the final result of specific heat because of
its complication. The function f(Q,R, β) in equation (4)
must be evaluated at saddle point with respect to the spin
self-interactions and the spin-glass order parameters.

This condition gives the following self-consistency
equations

RT =
2

(a2Jβ)2

∫
Dz

L(z)

∫
Dz1 cosh[Ω(z, z1)](x2

1 − 1),

(11)

RL =
2

(a4Jβ)2

∫
Dz

L(z)

∫
Dz1 cosh[Ω(z, z1)](y2

1 − 1),

(12)

QT =
2

(a2Jβ)2

∫
Dz

[
1

L(z)

∫
Dz1 cosh[Ω(z, z1)x1

]2

,

(13)

QL =
2

(a4Jβ)2

∫
Dz

[
1

L(z)

∫
Dz1 cosh[Ω(z, z1)]y1

]2

.

(14)

Figure 1 shows the dependence of the longitudinal and the
transverse components of spin self-interactions and spin
glass order parameters on temperature for different fields
with spin S = 1/2. It is clear to see that the longitudi-
nal components QL and RL of order parameters increase
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Fig. 2. The curves of the entropy depending on the reduced
temperature kBT/J for different field. From top to bottom,
the curves of S correspond to h̃ = 0.16, 0.24, 0.32, and 0.40.
Where d = 0.2, S = 1/2.

Fig. 3. The entropy as function of h̃. From bottom to top,
the reduced temperature kBT/J is 0.7575, 0.7625, 0.7675 and
0.7725 respectively, where d = 0.2, S = 1/2. The insert shows
Brodale’s experimental result.

with the increasing field while the transverse components
QT and RT decreases with the increasing field. At the
transition point, the transverse spin-glass parameter QT
becomes zero.

The dependence of the entropy on temperature for spin
S = 1/2 is plotted in Figure 2 for different fields. The
entropy is positive in the temperature region considered.

The field dependence of the entropy, S(h̃)/S(0), for
different temperature is illustrated in Figure 3. There is

Fig. 4. The curves of the specific heat depending on the tem-
perature for different field. In the right side, from bottom to
top, the curves of C correspond to h̃ = 0.16, 0.24, 0.32, and
0.40, where d = 0.2, S = 1/2.

Fig. 5. The parabolic approximation, C/T = A+Bh̃2. From
top to bottom, the curves correspond to kBT/J = 0.7575,
0.7625, 0.7675 and 0.7725, where d = 0.2, S = 1/2. The insert
shows Brodale’s experimental result.

no feature in these curves that obviously corresponds to
the hypothesis [10] that S is independent of h in the spin
glass phase, agreeing with the experimental observation
[9].

The temperature-specific heat curves are shown in Fig-
ure 4 for different fields. The curves of the specific heat vs.
temperature for different fields have a crossover behavior,
and are shifted to progressively higher temperature with
increasing field. Compared with Figure 1, we can see that
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there are anomalies in the curves which correspond to the
transition points (the boundaries of the QT ’s 6= 0 and
QT ’s = 0).

The weak field dependence of the specific heat
C(h̃)/C(0)− 1 is illustrated in Figure 5. One can see that
there are deviations from the parabolic approximation,
C/T = A + Bh2, where h denotes an applied field. This
result agrees with the experimental results very well [9].

In summary, the quantum XY spin glass model with
the planar DM interaction in external field for spins
S = 1/2 is investigated theoretically. Numerical calcula-
tions show that the entropy is positive [7]. The entropy is
not independent of the field. The specific heat depending
on the temperature has crossover behavior. There is devi-
ation from the parabolic approximation, C/T = A+Bh2.
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